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Background/Motivation 



Target Problems: PDES and more… 

PDES 

Circuits 

Inhomogeneous 

Fluids 

And More… 



Target Platforms: Any and All 
(Now and in the Future) 

Desktop: Development and more… 

Capability machines:  

Redstorm (XT3), JaguarPF (XT5), Clusters 

Roadrunner (Cell-based). 

Multicore nodes. 

Parallel software environments: 
MPI of course. 

threads, vectors, CUDA OpenCL, … 

Combinations of the above. 

User “skins”: 
C++/C, Python 

Fortran. 

Web, CCA. 
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Evolving Trilinos Solution 

Numerical math 
Convert to models that 
can be solved on digital 

computers 

Algorithms 
Find faster and more 
efficient ways to solve 

numerical models 

L(u)=f 
Math. model 

Lh(uh)=fh 
Numerical model 

uh=Lh
-1  fh 

Algorithms 

physics 

computation 

Linear 

Nonlinear 

Eigenvalues 
Optimization 

Automatic diff. 

Domain dec. 

Mortar methods 

Time domain 

Space domain 

Petra  

Utilities 

Interfaces 
Load Balancing 

solvers 

discretizations methods 

core 

Beyond a “solvers” framework 

Natural expansion of capabilities to satisfy 

application and research needs 

Discretization methods, AD, Mortar methods, … 



Trilinos Package Summary 
http://trilinos.sandia.gov 

Objective Package(s) 

Discretizations 
Meshing & Spatial Discretizations phdMesh, Intrepid, Pamgen, Sundance, ITAPS 

Time Integration Rythmos 

Methods 
Automatic Differentiation Sacado 

Mortar Methods Moertel 

Services 

Linear algebra objects Epetra, Jpetra, Tpetra, Kokkos 

Interfaces Thyra, Stratimikos, RTOp, FEI, Shards 

Load Balancing Zoltan, Isorropia 

“Skins” PyTrilinos, WebTrilinos, ForTrilinos, Ctrilinos, Optika 

C++ utilities, I/O, thread API Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx 

Solvers 

Iterative (Krylov) linear solvers AztecOO, Belos, Komplex 

Direct sparse linear solvers Amesos 

Direct dense linear solvers Epetra, Teuchos, Pliris 

Iterative eigenvalue solvers Anasazi, Rbgen 

ILU-type preconditioners AztecOO, IFPACK, Tifpack 

Multilevel preconditioners ML, CLAPS 

Block preconditioners Meros 

Nonlinear system solvers NOX, LOCA 

Optimization (SAND) MOOCHO, Aristos, TriKota, Globipack, Optipack 

Stochastic PDEs Stokhos 



Capability Leaders: 

Layer of Proactive Leadership 

Areas: 

Framework, Tools & Interfaces (J. Willenbring). 

Software Engineering Technologies and Integration (R. Bartlett). 

Discretizations (P. Bochev). 

Geometry, Meshing & Load Balancing (K. Devine). 

Scalable Linear Algebra (M. Heroux). 

Linear & Eigen Solvers (J. Hu). 

Nonlinear, Transient & Optimization Solvers (A. Salinger). 

Each leader provides strategic direction across all Trilinos packages 

within area. 
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Package Concepts 
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Interoperability vs. Dependence 

    (“Can Use”)                   (“Depends On”) 

Although most Trilinos packages have no explicit 
dependence, often packages must interact with some other 
packages: 

NOX needs operator, vector and linear solver objects. 

AztecOO needs preconditioner, matrix, operator and vector objects. 

Interoperability is enabled at configure time.  For example, NOX: 

--enable-nox-lapack     compile NOX lapack interface libraries 

--enable-nox-epetra     compile NOX epetra interface libraries 

--enable-nox-petsc       compile NOX petsc interface libraries 

Trilinos cmake system is vehicle for: 
Establishing interoperability of Trilinos components… 

Without compromising individual package autonomy. 
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Trilinos Interoperability Mechanisms 
(Acquired as Package Matures) 

Package builds under Trilinos 

configure scripts. 

Package can be built as part of a 
suite of packages; cross-package 
interfaces enable/disable 
automatically 

Package accepts user data as 

Epetra or Thyra objects 

Applications using Epetra/Thyra 
can use package 

Package accepts parameters 

from Teuchos ParameterLists 

Applications using Teuchos 
ParameterLists can drive package 

Package can be used via Thyra 

abstract solver classes 

Applications or other packages 
using Thyra can use package 

Package can use Epetra for 

private data. 
 

Package  can then use other 
packages that understand Epetra 

Package accesses solver 

services via Thyra interfaces 

Package  can then use other 
packages that implement Thyra 
interfaces 

Package available via 

PyTrilinos 

Package  can be used with other 
Trilinos packages via Python. 
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“Can Use”  vs. “Depends On” 

“Can Use” 

Interoperable without dependence. 

Dense is Good. 

Encouraged. 

“Depends On” 

OK, if essential. 

Epetra, Teuchos: 9 clients. 

Thyra, NOX: 2 clients. 

Discouraged. 
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What Trilinos is not … 
Trilinos is not a single monolithic piece of software. Each package: 

Can be built independent of Trilinos. 

Has its own self-contained CVS structure. 

Has its own Bugzilla product and mail lists. 

Development team is free to make its own decisions about algorithms, 

coding style, release contents, testing process, etc. 

Trilinos top layer is not a large amount of source code: ~1.5% 

Trilinos is not “indivisible”: 

You don’t need all of Trilinos to get things done. 

Any collection of packages can be combined and distributed. 

Upcoming public release contains ~45 of the 50+ Trilinos packages. 
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Whirlwind Tour of Packages 

Core Utilities 

Discretizations       Methods        Solvers 
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Interoperable Tools for Rapid Development 
of Compatible Discretizations Intrepid 

Intrepid offers an innovative software design for compatible discretizations:  

 allows access to FEM, FV and FD methods using a common API 

 supports hybrid discretizations (FEM, FV and FD) on unstructured grids 

 supports a variety of cell shapes: 

 standard shapes (e.g. tets, hexes): high-order finite element methods 

 arbitrary (polyhedral) shapes: low-order mimetic finite difference methods 

 enables optimization, error estimation, V&V, and UQ using fast invasive techniques 

(direct support for cell-based derivative computations or via automatic differentiation) 

Direct: FV/D 

Reconstruction 

Cell Data 

Reduction 

Pullback: FEM 

Higher order General cells 

k

Forms 

d,d*, ,^,(,)

Operations 

{C0,C1,C2,C3}
Discrete forms 

D,D*,W,M
Discrete ops. 

Developers:  Pavel Bochev and Denis Ridzal 
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Rythmos 

Suite of time integration (discretization) methods 

Includes: backward Euler, forward Euler, explicit Runge-Kutta, 

and implicit BDF at this time.   

Native support for operator split methods. 

Highly modular.   

Forward sensitivity computations will be included in the first 

release with adjoint sensitivities coming in near future.  

Developers: Todd Coffey, Roscoe Bartlett 
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Whirlwind Tour of Packages 

Discretizations       Methods       Core        Solvers 
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Sacado:  Automatic Differentiation 

  Efficient OO based AD tools optimized for element-level computations  

  Applies AD at “element”-level computation 
“Element” means finite element, finite volume, network device,… 

  Template application’s element-computation code 
Developers only need to maintain one templated code base 

  Provides three forms of AD 

Forward Mode: 

• Propagate derivatives of intermediate variables w.r.t. independent variables forward 

• Directional derivatives, tangent vectors, square Jacobians,                when m  n. 

Reverse Mode:   

• Propagate derivatives of dependent variables w.r.t. intermediate variables backwards 

• Gradients, Jacobian-transpose products (adjoints),                 when n > m. 

Taylor polynomial mode: 

Basic modes combined for higher derivatives. 

Developers:  Eric Phipps, David Gay 
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Whirlwind Tour of Packages 

Discretizations       Methods       Core        Solvers 
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Portable utility package of commonly useful tools: 

ParameterList class: key/value pair database, recursive capabilities. 

LAPACK, BLAS wrappers (templated on ordinal and scalar type). 

Dense matrix and vector classes (compatible with BLAS/LAPACK). 

FLOP counters, timers. 

Ordinal, Scalar Traits support: Definition of ‘zero’, ‘one’, etc. 

Reference counted pointers / arrays, and more… 

Takes advantage of advanced features of C++: 
Templates 

Standard Template Library (STL) 

Teuchos::ParameterList: 
Allows easy control of solver parameters. 

XML format input/output. 

Developers: Roscoe Barlett, Kevin Long, Heidi Thornquist, Mike Heroux,  

                      Paul Sexton, Kris Kampshoff, Chris Baker 

Teuchos 
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1Petra is Greek for “foundation”. 

Trilinos Common Language: Petra 

Petra provides a “common language” for distributed 

linear algebra objects (operator, matrix, vector) 

Petra1 provides distributed matrix and vector services. 

Exists in basic form as an object model: 

Describes basic user and support classes in UML, 

independent of language/implementation. 

Describes objects and relationships to build and use 

matrices, vectors and graphs. 

Has 3 implementations under development. 
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Petra Implementations 

  Epetra (Essential Petra):   

Current production version.  

Restricted to real, double precision arithmetic. 

Uses stable core subset of C++ (circa 2000). 

Interfaces accessible to C and Fortran users. 

 Tpetra (Templated Petra):   

Next generation C++ version.  

Templated scalar and ordinal fields. 

Uses namespaces, and STL: Improved usability/efficiency. 

  Jpetra (Java Petra):   
Pure Java. Portable to any JVM.   

Interfaces to Java versions of MPI, LAPACK and BLAS via interfaces. 

Developers: Chris Baker, Mike Heroux, Rob Hoekstra, Alan Williams 
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EpetraExt: Extensions to Epetra 

Library of useful classes not needed by everyone 

Most classes are types of “transforms”. 

Examples: 

Graph/matrix view extraction. 

Epetra/Zoltan interface. 

Explicit sparse transpose. 

Singleton removal filter, static condensation filter. 

Overlapped graph constructor, graph colorings. 

Permutations. 

Sparse matrix-matrix multiply. 

Matlab, MatrixMarket I/O functions. 

Most classes are small, useful, but non-trivial to write. 

Developer: Robert Hoekstra, Alan Williams, Mike Heroux 
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Zoltan 

Data Services for Dynamic Applications 

Dynamic load balancing 

Graph coloring 

Data migration 

Matrix ordering 

Partitioners: 
Geometric (coordinate-based) methods: 

• Recursive Coordinate Bisection (Berger, Bokhari) 

• Recursive Inertial Bisection (Taylor, Nour-Omid) 

• Space Filling Curves (Peano, Hilbert) 

• Refinement-tree Partitioning (Mitchell)  

Hypergraph and graph (connectivity-based) methods: 
• Hypergraph Repartitioning PaToH (Catalyurek) 

• Zoltan Hypergraph Partitioning 

• ParMETIS  (U. Minnesota) 

• Jostle (U. Greenwich) 

Developers: Karen Devine, Eric Boman, Robert Heaphy 
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Thyra 

High-performance, abstract interfaces for linear algebra 

Offers flexibility through abstractions to algorithm developers 

Linear solvers (Direct, Iterative, Preconditioners) 

Abstraction of basic vector/matrix operations (dot, axpy, mv). 

Can use any concrete linear algebra library (Epetra, PETSc, BLAS). 

Nonlinear solvers (Newton, etc.) 

Abstraction of linear solve (solve Ax=b). 

Can use any concrete linear solver library: 

• AztecOO, Belos, ML, PETSc, LAPACK 

Transient/DAE solvers (implicit) 

Abstraction of nonlinear solve. 

… and so on. 

Developers:  Roscoe Bartlett, Kevin Long 
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“Skins” 
PyTrilinos provides Python access to Trilinos packages 

Uses SWIG to generate bindings. 
Epetra, AztecOO, IFPACK, ML, NOX, LOCA, Amesos and 
NewPackage are supported. 

CTrilinos: C wrapper (mostly to support ForTrilinos). 

ForTrilinos: OO Fortran interfaces. 

WebTrilinos:  Web interface to Trilinos 

Generate test problems or read from file. 
Generate C++ or Python code fragments and click-run. 
Hand modify code fragments and re-run. 
Will use during hands-on. 

Developers: Ray Tuminaro, Jonathan Hu, and Marzio Sala 

Developer: Bill Spotz 

Developers: Nicole Lemaster, Damian Rouson 
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Whirlwind Tour of Packages 

Discretizations       Methods       Core        Solvers 
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Interface to direct solvers for distributed sparse linear 

systems (KLU, UMFPACK, SuperLU, MUMPS, ScaLAPACK) 

Challenges: 
No single solver dominates 

Different interfaces and data formats, serial and parallel 

Interface often changes between revisions 

Amesos offers: 

A single, clear, consistent interface, to various packages 

Common look-and-feel for all classes 

Separation from specific solver details 

Use serial and distributed solvers; Amesos takes care of data 

redistribution 

Native solvers:  KLU and Paraklete 

Developers: Ken Stanley, Marzio Sala, Tim Davis 

Amesos 
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AztecOO 

Krylov subspace solvers: CG, GMRES, Bi-CGSTAB,… 

Incomplete factorization preconditioners  

Aztec is the workhorse solver at Sandia: 

Extracted from the MPSalsa reacting flow code. 

Installed in dozens of Sandia apps. 

1900+ external licenses.  

AztecOO improves on Aztec by: 

Using Epetra objects for defining matrix and RHS. 

Providing more preconditioners/scalings. 

Using C++ class design to enable more sophisticated use. 

AztecOO interfaces allows: 

Continued use of Aztec for functionality. 

Introduction of new solver capabilities outside of Aztec. 

Developers:  Mike Heroux, Alan Williams, Ray Tuminaro 
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Belos 

Next-generation linear solver library, written in templated C++. 

Provide a generic framework for developing iterative algorithms for solving large-scale, 
linear problems. 

Algorithm implementation is accomplished through the use of traits classes and abstract 
base classes: 

Operator-vector products:  Belos::MultiVecTraits,  Belos::OperatorTraits 

Orthogonalization:  Belos::OrthoManager, Belos::MatOrthoManager 
Status tests:   Belos::StatusTest, Belos::StatusTestResNorm 

Iteration kernels:  Belos::Iteration 
Linear solver managers:  Belos::SolverManager 

AztecOO provides solvers for Ax=b,  what about solvers for: 
Simultaneously solved systems w/ multiple-RHS:  AX = B 
Sequentially solved systems w/ multiple-RHS:  AXi = Bi , i=1,…,t 
Sequences of multiple-RHS systems:  AiXi = Bi , i=1,…,t 

Many advanced methods for these types of linear systems 
Block methods:  block GMRES [Vital], block CG/BICG [O’Leary] 

“Seed” solvers:  hybrid GMRES [Nachtigal, et al.] 

Recycling solvers:  recycled Krylov methods [Parks, et al.] 

Restarting techniques, orthogonalization techniques, …    

Developers:  Heidi Thornquist, Mike Heroux, Mike Parks, 

                       Rich Lehoucq, Teri Barth 
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IFPACK: Algebraic Preconditioners 

Overlapping Schwarz preconditioners with incomplete 
factorizations, block relaxations, block direct solves. 

Accept user matrix via abstract matrix interface (Epetra 
versions). 

Uses Epetra for basic matrix/vector calculations. 

Supports simple perturbation stabilizations and condition 
estimation. 

Separates graph construction from factorization, improves 
performance substantially. 

Compatible with AztecOO, ML, Amesos. Can be used by 
NOX and ML. 

Developers:  Marzio Sala, Mike Heroux 



33 

                   : Multi-level Preconditioners 

Smoothed aggregation, multigrid and domain decomposition 

preconditioning package 

Critical technology for scalable performance of some key 
apps. 

ML compatible with other Trilinos packages: 

Accepts user data as Epetra_RowMatrix object (abstract interface). 

Any implementation of Epetra_RowMatrix works. 

Implements the Epetra_Operator interface. Allows ML preconditioners 
to be used with AztecOO, Belos, Anasazi. 

Can also be used completely independent of other Trilinos 

packages. 

Developers: Ray Tuminaro, Jonathan Hu, Marzio Sala 
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Anasazi 

Next-generation eigensolver library, written in templated C++. 

Provide a generic framework for developing iterative algorithms for solving large-scale 
eigenproblems. 

Algorithm implementation is accomplished through the use of traits classes and 
abstract base classes: 

Operator-vector products:  Anasazi::MultiVecTraits,  Anasazi::OperatorTraits 

Orthogonalization:  Anasazi::OrthoManager, Anasazi::MatOrthoManager 
Status tests:   Anasazi::StatusTest, Anasazi::StatusTestResNorm 

Iteration kernels:  Anasazi::Eigensolver 
Eigensolver managers:  Anasazi::SolverManager 
Eigenproblem:  Anasazi::Eigenproblem 

Sort managers:  Anasazi::SortManager 

Currently has solver managers for three eigensolvers: 
Block Krylov-Schur 

Block Davidson  

LOBPCG 

Can solve: 
standard and generalized eigenproblems 

Hermitian and non-Hermitian eigenproblems 

real or complex-valued eigenproblems 

Developers:  Heidi Thornquist, Mike Heroux, Chris Baker,  

                       Rich Lehoucq, Ulrich Hetmaniuk 
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NOX: Nonlinear Solvers 

Suite of nonlinear solution methods 

Implementation
• Parallel
• OO-C++
• Independent of the 

linear algebra 
package!

Jacobian Estimation
• Graph Coloring
• Finite Difference
• Jacobian-Free 

Newton-Krylov

Broyden s Method Newton s Method
     Tensor Method    

Globalizations
Trust Region

Dogleg
Inexact Dogleg

Line Search
Interval Halving

Quadratic
Cubic

More -Thuente

http://trilinos.sandia.gov/packages/nox

Developers:  Tammy Kolda, Roger Pawlowski 
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LOCA 

Library of continuation algorithms 

Provides  

Zero order continuation   

First order continuation   

Arc length continuation   

Multi-parameter continuation (via Henderson's MF Library)  

Turning point continuation   

Pitchfork bifurcation continuation   

Hopf bifurcation continuation   

Phase transition continuation   

Eigenvalue approximation (via ARPACK or Anasazi) 

Developers: Andy Salinger, Eric Phipps 
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MOOCHO & Aristos 

MOOCHO: Multifunctional Object-Oriented arCHitecture 

for Optimization 

Large-scale invasive simultaneous analysis and design 

(SAND) using reduced space SQP methods.  

Aristos: Optimization of large-scale design spaces 

Invasive optimization approach based on full-space SQP 

methods. 

Efficiently manages inexactness in the inner linear system 
solves. 

Developer: Denis Ridzal 

Developer: Roscoe Bartlett 



Full Vertical 
Solver Coverage

Bifurcation Analysis LOCA

DAEs/ODEs:

Transient Problems 

Rythmos

Eigen Problems:

Linear Equations:

 Linear Problems                     
AztecOO

Belos
Ifpack, ML, etc...

Anasazi

Vector Problems:

Matrix/Graph Equations:
Distributed Linear Algebra Epetra

Tpetra

Optimization

MOOCHO
Unconstrained:

Constrained:

Nonlinear Problems NOXS
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Solver Collaborations:  

ANAs, LALs and APPs 



Trilinos Strategic Goals 

• Scalable Computations: As problem size and processor counts increase, 

the cost of the computation will remain nearly fixed.   

• Hardened Computations: Never fail unless problem essentially 
intractable, in which case we diagnose and inform the user why the problem 
fails and provide a reliable measure of error. 

• Full Vertical Coverage: Provide leading edge enabling technologies 
through the entire technical application software stack: from problem 
construction, solution, analysis and optimization.  

• Grand Universal Interoperability: All Trilinos packages, and important 
external packages, will be interoperable, so that any combination of packages 
and external software (e.g., PETSc, Hypre) that makes sense algorithmically 
will be possible within Trilinos.  

• Universal Accessibility: All Trilinos capabilities will be available to users 
of major computing environments: C++, Fortran, Python and the Web, and 
from the desktop to the latest scalable systems. 

• Universal Solver RAS: Trilinos will be: 

– Reliable: Leading edge hardened, scalable solutions for each of these 
applications 

– Available: Integrated into every major application at Sandia  

– Serviceable: Easy to maintain and upgrade within the application 
environment. 

Algorithmic 
Goals 

Software 
Goals 
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Categories of Abstract Problems  

and Abstract Algorithms 

Linear Problems: 

Linear equations: 

Eigen problems: 

Nonlinear Problems: 

Nonlinear equations: 

Stability analysis: 

Transient Nonlinear Problems: 

DAEs/ODEs: 

Optimization Problems: 

Unconstrained: 

Constrained: 

Trilinos Packages 

Belos 

Anasazi 

NOX 

LOCA 

Aristos 

Rythmos 

MOOCHO 
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 Abstract Numerical Algorithms 

  An abstract numerical algorithm (ANA) is a numerical algorithm that can be 

expressed solely in terms of vectors, vector spaces, and linear operators 

Example Linear ANA (LANA) : Linear Conjugate Gradients 

scalar product
<x,y> defined by 
vector space 

vector-vector 
operations

linear operator 
applications

scalar operations

Types of operations Types of objects Linear Conjugate Gradient Algorithm 

• ANAs can be very mathematically sophisticated! 

• ANAs can be extremely reusable! 
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ANA Linear 

Operator 

Interface 

Solver Software Components  

and Interfaces 

2) LAL : Linear Algebra Library (e.g. vectors, sparse matrices, sparse factorizations, 
preconditioners) 

ANA 

APP 

ANA/APP 

Interface 

ANA Vector 

Interface 

1) ANA : Abstract Numerical Algorithm (e.g. linear solvers, eigensolvers, nonlinear 
solvers, stability analysis, uncertainty quantification, transient solvers, 

optimization etc.) 

3) APP : Application (the model: physics, discretization method etc.) 

Example Trilinos Packages: 

• Belos (linear solvers) 

• Anasazi (eigensolvers) 

• NOX (nonlinear equations) 

• Rhythmos (ODEs,DAEs) 

• MOOCHO (Optimization) 

• … 

Example Trilinos Packages: 

• Epetra/Tpetra (Mat,Vec) 

• Ifpack, AztecOO, ML (Preconditioners) 

• Meros (Preconditioners) 

• Pliris (Interface to direct solvers) 

• Amesos (Direct solvers) 

• Komplex (Complex/Real forms) 

• … 
Types of Software Components 

Thyra 

ANA Interfaces to 

Linear Algebra 

FEI/Thyra 

APP to LAL Interfaces Custom/Thyra 

LAL to LAL 

Interfaces 

Thyra::Nonlin 

Examples: 

• SIERRA 

• NEVADA 

• Xyce 

• Sundance 

•  … 

LAL 

Matrix Preconditioner 

Vector 



Introducing Stratimikos 

• Stratimikos created Greek words "stratigiki“ (strategy) and "grammikos“ (linear) 

• Defines class Thyra::DefaultLinearSolverBuilder.  

• Provides common access to: 

• Linear Solvers: Amesos, AztecOO, Belos, … 

• Preconditioners: Ifpack, ML, … 

• Reads in options through a parameter list (read from XML?) 

• Accepts any linear system objects that provide 

• Epetra_Operator / Epetra_RowMatrix view of the matrix 

• SPMD vector views for the RHS and LHS (e.g. Epetra_[Multi]Vector objects) 

• Provides uniform access to linear solver options that can be leveraged across multiple 

applications and algorithms 

Key Points 

• Stratimikos is an important building 

block for creating more sophisticated 

linear solver capabilities! 



Stratimikos Parameter List and Sublists  

<ParameterList name=“Stratimikos”> 

  <Parameter name="Linear Solver Type" type="string" value=“AztecOO"/> 

  <Parameter name="Preconditioner Type" type="string" value="Ifpack"/> 

  <ParameterList name="Linear Solver Types"> 

    <ParameterList name="Amesos"> 

      <Parameter name="Solver Type" type="string" value="Klu"/> 

      <ParameterList name="Amesos Settings"> 

        <Parameter name="MatrixProperty" type="string" value="general"/> 

        ... 

        <ParameterList name="Mumps"> ... </ParameterList> 

        <ParameterList name="Superludist"> ... </ParameterList> 

      </ParameterList> 

    </ParameterList> 

    <ParameterList name="AztecOO"> 

      <ParameterList name="Forward Solve"> 

        <Parameter name="Max Iterations" type="int" value="400"/> 

        <Parameter name="Tolerance" type="double" value="1e-06"/> 

        <ParameterList name="AztecOO Settings"> 

          <Parameter name="Aztec Solver" type="string" value="GMRES"/> 

          ... 

        </ParameterList> 

      </ParameterList> 

      ... 

    </ParameterList> 

    <ParameterList name="Belos"> ... </ParameterList> 

  </ParameterList> 

<ParameterList name="Preconditioner Types"> 

    <ParameterList name="Ifpack"> 

      <Parameter name="Prec Type" type="string" value="ILU"/> 

      <Parameter name="Overlap" type="int" value="0"/> 

      <ParameterList name="Ifpack Settings"> 

        <Parameter name="fact: level-of-fill" type="int" value="0"/> 

        ... 

      </ParameterList> 

    </ParameterList> 

    <ParameterList name="ML"> ... </ParameterList> 

  </ParameterList> 

</ParameterList> 
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Sublists passed 

on to package 

code! 

Top level parameters 

Every parameter 

and sublist is 

handled by Thyra 
code and is fully 

validated! 
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Trilinos Integration into an 

Application 

Where to start? 

http://trilinos.sandia.gov 



Export Makefile System 

Once Trilinos is built, how do you link against the application?   

There are a number of issues: 

• Library link order: 

• -lnoxepetra -lnox –lepetra –lteuchos –lblas –llapack 

• Consistent compilers: 

• g++, mpiCC, icc… 

• Consistent build options and package defines: 

• g++ -g –O3 –D HAVE_MPI –D _STL_CHECKED 

Answer: Export Makefile system 



Why Export Makefiles are Important 

• The number of packages in Trilinos has exploded.   

• As package dependencies (especially optional ones) are 
introduced, more maintenance is required by the top-level 
packages: 

NOX Amesos 

EpetraExt 

Epetra 

Ifpack 

ML SuperLU 

Direct Dependencies Indirect Dependencies 

NOX either must: 

• Account for the new libraries in it’s configure script (unscalable)  

• Depend on direct dependent packages to supply them through 

export makefiles. 

New Library New Library 



Export Makefiles in Action 

#Excerpt from TRILINOS_INSTALL_DIR)/include/Makefile.client.Epetra. 

# Include the Trilinos export makefile from package=Epetra. 
include $(TRILINOS_INSTALL_DIR)/include/Makefile.export.Epetra 

# Add the Trilinos installation directory to the search paths 
# for libraries and headers 
LIB_PATH = $(TRILINOS_INSTALL_DIR)/lib 

INCLUDE_PATH = $(TRILINOS_INSTALL_DIR)/include $(CLIENT_EXTRA_INCLUDES) 

# Set the C++ compiler and flags to those specified in the export makefile 
CXX = $(EPETRA_CXX_COMPILER) 

CXXFLAGS = $(EPETRA_CXX_FLAGS) 

# Add the Trilinos libraries, search path, and rpath to the  
# linker command line arguments  
LIBS = $(CLIENT_EXTRA_LIBS) $(SHARED_LIB_RPATH_COMMAND) \ 
  $(EPETRA_LIBRARIES) \ 
  $(EPETRA_TPL_LIBRARIES) $(EPETRA_EXTRA_LD_FLAGS)  

# Rules for building executables and objects.  
%.exe : %.o $(EXTRA_OBJS) 
        $(CXX) -o $@ $(LDFLAGS) $(CXXFLAGS) $< $(EXTRA_OBJS) -L$(LIB_PATH) $(LIBS) 

%.o : %.cpp 
        $(CXX) -c -o $@ $(CXXFLAGS) -I$(INCLUDE_PATH) $(EPETRA_TPL_INCLUDES) $< 
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Concluding Remarks 
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Trilinos / PETSc Interoperability 

Epetra_PETScAIJMatrix class 

Derives from Epetra_RowMatrix 

Wrapper for serial/parallel PETSc aij matrices 

Utilizes callbacks for matrix-vector product, getrow 

No deep copies 

Enables PETSc application to construct and call virtually any 
Trilinos preconditioner 

ML accepts fully constructed PETSc KSP solvers as smoothers 

Fine grid only 

Assumes fine grid matrix is really PETSc aij matrix 

Complements Epetra_PETScAIJMatrix class 
For any smoother with getrow kernel, PETSc implementation should be 
*much* faster than Trilinos 

For any smoother with matrix-vector product kernel, PETSc and Trilinos 
implementations should be comparable 



External Visibility 
Awards: R&D 100, HPC SW Challenge (04). 

www.cfd-online.com: 

Industry Collaborations: Various. 

Linux distros: Debian, Mandriva, Ubuntu, Fedora.  

SciDAC TOPS-2 partner, EASI (with ORNL, UT-Knoxville, UIUC, UC-Berkeley). 

Over 10,000 downloads since March 2005. 

Occasional unsolicited external endorsements such as the following two-person exchange on 
mathforum.org: 

       > The consensus seems to be that OO has little, if anything, to offer 

       > (except bloat) to numerical computing. 

       I would completely disagree. A good example of using OO in numerics is 

       Trilinos: http://software.sandia.gov/trilinos/ 

Trilinos   
A project led by Sandia to develop an object-oriented software framework for scientific 

computations.  

This is an active project which includes several state-of-the-art solvers and lots of other nice things 

a  
software engineer writing CFD codes would find useful. Everything is freely available for download 

once  

you have registered. Very good!  
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Trilinos Availability / Information 
Trilinos and related packages are available via LGPL. 

Current release (10.0) is “click release”.  Unlimited availability. 

Trilinos Release 10.1: January 2010. 

Trilinos Awards: 
2004 R&D 100 Award. 
SC2004 HPC Software Challenge Award. 

Sandia Team Employee Recognition Award. 
Lockheed-Martin Nova Award Nominee. 

More information: 
http://trilinos.sandia.gov 

Annual Forums: 
DOE ACTS Tutorial (3rd week in August). 

Annual Trilinos User Group Meeting in November @ SNL 

• talks available for download 



Useful Links 

Trilinos website:  http://trilinos.sandia.gov 

Trilinos tutorial:  http://trilinos.sandia.gov/Trilinos10.0Tutorial.pdf 

Trilinos mailing lists:  http://trilinos.sandia.gov/mail_lists.html 

Trilinos User Group (TUG) meetings: 

http://trilinos.sandia.gov/events/trilinos_user_group_2008 

http://trilinos.sandia.gov/events/trilinos_user_group_2007 
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Trilinos Hands-On Tutorial 

http://code.google.com/p/trilinos 
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Teuchos Package 

• For many Trilinos packages, this is the only 

required or “depends on” package.  

• Provides basic utilities:  

• Parameter List  

• Memory management/Smart Pointer classes 

• Command Line Parser 

• Templated BLAS/LAPACK interfaces 

• XML Parser 

• MPI Communicator 
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Parameter List 
A key/value pair database that is recursive 

Uses an implementation of the boost::Any object 

Can read or output to XML files (internal xml or link to external 

xml) 

Recursive: Sublists – nesting of parameter lists within itself 

Primary means of setting parameters in Trilinos packages: 
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Teuchos::ParameterList p; 

p.set(“Solver”, “GMRES”); 

p.set(“Tolerance”, 1.0e-4); 

p.set(“Max Iterations”, 100); 

Teuchos::ParameterList& lsParams = p.sublist(“Solver Options”); 

lsParams.set(“Fill Factor”, 1); 

double tol = p.get<double>(“Tolerance”); 

int max_iters = p.get<int>(“Max Iterations”); 

int fill = p.sublist(“Solver Options”).get<int>(“Fill Factor”); 



Reference Counted Smart Pointer 
Powerful memory management for Trilinos packages! 

A wrapper for a pointer so that you don’t have to explicity 

deallocate the memory. 

When last RCP to the object is deleted, the underlying memory is 

deallocated. 

Next C++ standard will have Boost Smart Pointers 
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class A { 

}; 

int main { 

  A* a  = new A; 

  using namespace Teuchos; 

  RCP<A> a = rcp(new A); 

  RCP<A> b = a;  

} 

class A { 

}; 

int main { 

  A* a  = new A; 

        . 

        . 

        . 

  delete a; 

} 



Teuchos::RCP Technical Report 

SAND2007-4078 

http://trilinos.sandia.gov/documentation.html 

Trilinos/doc/RCPbeginnersGuide 



Time Monitor 

Timers that keep track of: 

Runtime 

Number of calls 

Time object associates a string name to the timer. 
RCP<Time> fill_timer = TimeMonitor::getNewTimer(“Fill Time”); 

When TimeMonitor is created, the timer starts: 
TimeMonitor tm(Time& t); 

When TimeMonitor is destroyed (usually when you leave 

scope), the timer stops. 
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Epetra Package 

Linear Algebra Package 

http://trilinos.sandia.gov/packages/epetra/ 
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Typical Flow of Epetra Object 

Construction 

Construct Comm 

Construct Map 

Construct x Construct b Construct A 

• Any number of Comm objects can exist. 

• Comms can be nested (e.g., serial within MPI). 

•  Maps describe parallel layout. 

•  Maps typically associated with more than one comp 
object. 

•  Two maps (source and target) define an export/import 
object. 

• Computational objects. 

• Compatibility assured via common map. 



// Header files omitted… 
int main(int argc, char *argv[]) { 

  MPI_Init(&argc,&argv); // Initialize MPI, MpiComm 
  Epetra_MpiComm Comm( MPI_COMM_WORLD );                       

A Simple Epetra/AztecOO Program 

  // ***** Create x and b vectors ***** 

  Epetra_Vector x(Map); 
  Epetra_Vector b(Map); 

  b.Random(); // Fill RHS with random #s                   

// ***** Create an Epetra_Matrix  tridiag(-1,2,-1) ***** 

  Epetra_CrsMatrix A(Copy, Map, 3); 
  double negOne = -1.0; double posTwo = 2.0; 

  for (int i=0; i<NumMyElements; i++) { 
    int GlobalRow = A.GRID(i);  

    int RowLess1 = GlobalRow - 1;  
    int RowPlus1 = GlobalRow + 1; 

    if (RowLess1!=-1)  
       A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowLess1); 
    if (RowPlus1!=NumGlobalElements)  

       A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowPlus1); 
    A.InsertGlobalValues(GlobalRow, 1, &posTwo, &GlobalRow); 

  } 
A.FillComplete(); // Transform from GIDs to LIDs 

// ***** Map puts same number of equations on each pe *****         

  int NumMyElements = 1000 ; 
  Epetra_Map Map(-1, NumMyElements, 0, Comm); 

  int NumGlobalElements = Map.NumGlobalElements(); 

// ***** Report results, finish ***********************     

  cout << "Solver performed " << solver.NumIters()    
          << " iterations." << endl 

          << "Norm of true residual = "  
          << solver.TrueResidual()  
          << endl; 

  MPI_Finalize() ; 

  return 0; 
} 

  // ***** Create/define AztecOO instance, solve ***** 
  AztecOO solver(problem); 

  solver.SetAztecOption(AZ_precond, AZ_Jacobi); 
  solver.Iterate(1000, 1.0E-8); 

// ***** Create Linear Problem ***** 
  Epetra_LinearProblem problem(&A, &x, &b);           

// Header files omitted… 
int main(int argc, char *argv[]) { 

Epetra_SerialComm Comm();                      



Petra Implementations 

Three version under development: 

Epetra (Essential Petra):   

Current production version.  

Restricted to real, double precision arithmetic. 

Uses stable core subset of C++ (circa 2000). 

Interfaces accessible to C and Fortran users. 

Tpetra (Templated Petra):   

Next generation C++ version.  

Templated scalar and ordinal fields. 

Uses namespaces, and STL: Improved usability/efficiency. 

Advanced node architecture, multiprecision support. 

Jpetra (Java Petra):   

Pure Java. Portable to any JVM.   

Interfaces to Java versions of MPI, LAPACK and BLAS via interfaces. 



Perform redistribution of distributed objects: 

• Parallel permutations. 

• “Ghosting” of values for local computations. 

• Collection of partial results from remote processors. 

Petra Object 

Model 

Abstract Interface to Parallel Machine 

• Shameless mimic of MPI interface. 

• Keeps MPI dependence to a single class (through all of Trilinos!). 

• Allow trivial serial implementation. 

• Opens door to novel parallel libraries (shmem, UPC, etc…) 

Abstract Interface for Sparse All-to-All Communication 

• Supports construction of pre-recorded “plan” for data-driven communications. 

• Examples:   

• Supports gathering/scatter of off-processor x/y values when computing y = Ax. 

• Gathering overlap rows for Overlapping Schwarz. 

• Redistribution of matrices, vectors, etc… 

Describes layout of distributed objects: 

• Vectors: Number of vector entries on each processor and global ID 

• Matrices/graphs: Rows/Columns managed by a processor. 

• Called “Maps” in Epetra. 

Dense Distributed Vector and Matrices: 

• Simple local data structure. 

• BLAS-able, LAPACK-able. 

• Ghostable, redistributable. 

• RTOp-able. 

Base Class for All Distributed Objects: 

• Performs all communication. 

• Requires Check, Pack, Unpack methods from derived class. 

Graph class for structure-only computations: 

• Reusable matrix structure. 

• Pattern-based preconditioners. 

• Pattern-based load balancing tools. Basic sparse matrix class: 

• Flexible construction process. 

• Arbitrary entry placement on parallel machine. 



Details about Epetra Maps 

Note:  Focus on Maps (not BlockMaps). 

Getting beyond standard use case… 

Note: All of the concepts presented here for Epetra 

carry over to Tpetra! 



1-to-1 Maps 

1-to-1 map (defn):  A map is 1-to-1 if each GID appears 

only once in the map (and is therefore associated with only 

a single processor). 

Certain operations in parallel data repartitioning require 1-

to-1 maps.  Specifically: 

The source map of an import must be 1-to-1. 

The target map of an export must be 1-to-1. 

The domain map of a 2D object must be 1-to-1. 

 The range map of a 2D object must be 1-to-1. 



2D Objects: Four Maps 

Epetra 2D objects: 
CrsMatrix, FECrsMatrix 

CrsGraph 

VbrMatrix, FEVbrMatrix 

Have four maps: 

RowMap: On each processor, the GIDs of the rows that processor 
will “manage”. 

ColMap: On each processor, the GIDs of the columns that 
processor will “manage”. 

DomainMap: The layout of domain objects  
 (the x vector/multivector in y=Ax). 

RangeMap: The layout of range objects  
 (the y vector/multivector in y=Ax). 

Must be 1-to-1 maps!!! 

Typically a 1-to-1 map 

Typically NOT a 1-to-1 map 



Sample Problem 

= 

y A x 



Case 1: Standard Approach 

RowMap  = {0, 1} 

ColMap  = {0, 1, 2} 

DomainMap  = {0, 1} 

RangeMap  = {0, 1} 

First 2 rows of A, elements of y and elements of x, kept on PE 0. 

Last row of A, element of y and element of x, kept on PE 1. 

PE 0 Contents PE 1 Contents 

RowMap  = {2} 

ColMap  = {1, 2} 

DomainMap  = {2} 

RangeMap  = {2} 

Notes: 

Rows are wholly owned. 

RowMap=DomainMap=RangeMap (all 1-to-1). 

ColMap is NOT 1-to-1. 

Call to FillComplete: A.FillComplete(); // Assumes 

= 

y A x 

Original Problem 



Case 2: Twist 1 

RowMap  = {0, 1} 

ColMap  = {0, 1, 2} 

DomainMap  = {1, 2} 

RangeMap  = {0} 

First 2 rows of A, first element of y and last 2 elements of x, kept on PE 0. 

Last row of A, last 2 element of y and first element of x, kept on PE 1. 

PE 0 Contents PE 1 Contents 

RowMap  = {2} 

ColMap  = {1, 2} 

DomainMap  = {0} 

RangeMap  = {1, 2} 

Notes: 

Rows are wholly owned. 

RowMap is NOT = DomainMap  

      is NOT = RangeMap (all 1-to-1). 

ColMap is NOT 1-to-1. 

Call to FillComplete:  

A.FillComplete(DomainMap, RangeMap); 

= 

y A x 

Original Problem 



Case 2: Twist 2 

RowMap  = {0, 1} 

ColMap  = {0, 1} 

DomainMap  = {1, 2} 

RangeMap  = {0} 

First row of A, part of second row of A, first element of y and last 2 elements of x, 
kept on PE 0. 

Last row, part of second row of A, last 2 element of y and first element of x, kept on 
PE 1. 

PE 0 Contents PE 1 Contents 

RowMap  = {1, 2} 

ColMap  = {1, 2} 

DomainMap  = {0} 

RangeMap  = {1, 2} 

Notes: 

Rows are NOT wholly owned. 

RowMap is NOT = DomainMap  

      is NOT = RangeMap (all 1-to-1). 

RowMap and ColMap are NOT 1-to-1. 

Call to FillComplete:  

A.FillComplete(DomainMap, RangeMap); = 

y A x 

Original Problem 



What does FillComplete Do? 

A bunch of stuff. 

One task is to create (if needed) import/export 

objects to support distributed matrix-vector 

multiplication: 

If ColMap  DomainMap, create Import object. 

If RowMap  RangeMap, create Export object. 

A few rules: 

Rectangular matrices will always require: 

A.FillComplete(DomainMap,RangeMap); 

DomainMap and RangeMap must be 1-to-1. 



Linear System Solves 



AztecOO 

Aztec is the previous workhorse solver at Sandia: 

Extracted from the MPSalsa reacting flow code. 

Installed in dozens of Sandia apps. 

AztecOO leverages the investment in Aztec: 

Uses Aztec iterative methods and preconditioners. 

AztecOO improves on Aztec by: 

Using Epetra objects for defining matrix and RHS. 

Providing more preconditioners/scalings. 

Using C++ class design to enable more sophisticated use. 

AztecOO interfaces allows: 

Continued use of Aztec for functionality. 

Introduction of new solver capabilities outside of Aztec. 

Belos is coming along as alternative. 

AztecOO will not go away. 

Will encourage new efforts and refactorings to use Belos. 



AztecOO Extensibility 

AztecOO is designed to accept externally defined: 

Operators (both A and M): 

• The linear operator A is accessed as an Epetra_Operator. 

• Users can register a preconstructed preconditioner as an 

Epetra_Operator. 

RowMatrix: 

• If A  is registered as a RowMatrix, Aztec’s preconditioners are 

accessible. 

• Alternatively M can be registered separately as an Epetra_RowMatrix, 

and Aztec’s preconditioners are accessible. 

StatusTests: 

• Aztec’s standard stopping criteria are accessible. 

• Can override these mechanisms by registering a StatusTest Object. 



AztecOO understands Epetra_Operator 

AztecOO is designed to 

accept externally defined: 

Operators (both A and M). 

RowMatrix (Facilitates use 

of AztecOO preconditioners 

with external A). 

StatusTests (externally-

defined stopping criteria). 
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Next generation linear solver / eigensolver library, written in 
templated C++. 
Provide a generic interface to a collection of algorithms for 
solving large-scale linear problems / eigenproblems. 
Algorithm implementation is accomplished through the use of 
traits classes and abstract base classes: 

e.g.: MultiVecTraits, OperatorTraits 
e.g.: SolverManager, Eigensolver / Iteration, Eigenproblem/ 
LinearProblem, StatusTest, OrthoManager, OutputManager 

Includes block linear solvers / eigensolvers: 
Higher operator performance. 
More reliable. 

Solves: 
 AX = X  or AX = BX  (Anasazi) 
 AX = B (Belos) 
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Block Solvers ( in general ): 

Achieve better performance for operator-vector products. 

Block Eigensolvers ( Op(A)X = LX ): 

Block Linear Solvers ( Op(A)X = B ): 

  Reliably determine multiple and/or clustered eigenvalues. 

  Example applications: Modal analysis, stability analysis,  

    bifurcation analysis (LOCA) 

  Useful for when multiple solutions are required for the same 

system of equations. 

  Example applications: 

•  Perturbation analysis 

•  Optimization problems 

•  Single right-hand sides where A has a handful of small eigenvalues 

•  Inner-iteration of block eigensolvers 
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Belos and Anasazi are solver libraries that: 

1. Provide an abstract interface to an operator-vector products, 

scaling, and preconditioning.  
2. Allow the user to enlist any linear algebra package for the 

elementary vector space operations essential to the 

algorithm. (Epetra, PETSc, etc.)   
3. Allow the user to define convergence of any algorithm (a.k.a. 

status testing).  
4. Allow the user to determine the verbosity level, formatting, 

and processor for the output.  
5. Allow these decisions to be made at runtime.  

6. Allow for easier creation of new solvers through “managers” 

using “iterations” as the basic kernels. 



81 

Eigenproblem/ LinearProblem Class 
Describes the problem and stores the answer 

Eigensolver / Linear Solver Manager (SolverManager) Class 
Parameter list driven strategy object describing behavior of solver 

Eigensolver / Iteration Class 
Provide basic iteration interface. 

MultiVecTraits and OperatorTraits 
Traits classes for interfacing linear algebra 

SortManagerClass [Anasazi only] 
Allows selection of desired eigenvalues 

OrthoManagerClass 
Provide basic interface for orthogonalization 

StatusTestClass 
Control testing of convergence, etc. 

OutputManagerClass 
Control verbosity and printing in a MP scenario 
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Anasazi (Trilinos Release 8.0): 

Solvers:  Block Krylov-Schur, Block Davidson, LOBPCG 

Can solve standard and generalized eigenproblems 

Can solve Hermitian and non-Hermitian eigenproblems 

Can target largest or smallest eigenvalues 

Block size is independent of number of requested eigenvalues 

Belos (Trilinos Release 8.0): 

Solvers:  CG, BlockCG, BlockGMRES, BlockFGMRES, GCRO-DR  

Belos::EpetraOperator, Thyra::LOWS, and Stratimikos interface 
allows for integration into other codes 

Block size is independent of number of right-hand sides 

Linear algebra adapters for Epetra, NOX/LOCA, and Thyra 

Epetra interface accepts Epetra_Operators, so can be used with 
ML, AztecOO, Ifpack, Belos, etc… 

Configurable via Teuchos::ParameterList 



Preconditioning 
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                   : AMG for Magnetics Simulations 

Efficient solution critical to HEDP Z-pinch simulations 

Challenges: 

Standard solvers do not converge 

Large near null space of curl 

Conductivity variation 

Mesh stretching 

Two Sandia AMG methods for eddy current eqns: 

(2002) Specialized AMG satisfying commutating relationship 

(2006) Implicitly reformulate (*) and leverage ML standard AMG: 

( ) 
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                   : Scaling on Red Storm 

10 times steps 

Chebyshev polynomial smoother 

Parallel load-balancing via Zoltan 

Processors 

S
o
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e
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o
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e
 T

im
e
 

Previous 
AMG 

New AMG 

10k 20k
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                   : AMG for non-symmetric 

systems 
For many applications, A  AT 

Symmetric AMG methods ineffective or diverge 

Non-symmetric AMG theory doesn’t exist 

ML has new AMG method for A  AT that minimizes basis 
function energy (Tuminaro & Sala) 

Charon drift-diffusion (P. Lin, J. Shadid, et al.) 



Scalability 
(MHD Pump, Cray XT3) 

Preconditioners 

• 1-level ILU(2,1) 

• 1-level ILU(2,3) 
• 1-level ILU(2,7) 

• 3-level ML(NSA,Gal) 

• 3-level ML(EMIN, PG) 

ML: Tuminaro, Hu 

Ifpack: Heroux 

By 

Velocity 

MHD 

Pump 



Scalability 
(MHD Pump, Cray XT3) 

~20x 



Multicore 

(Inter-core comm. with MPI) 

Nodes Cores 
per 

node

Compute Jac+Prec Linear Solve Total

Time (sec) Eff. Time (sec) Eff. Time (sec) Eff.

4096 1 16.9 ------- 4.3 ------- 21.2 ------

2048 2 18.2 93% 4.5 95% 22.6 94%

1024 4 17.7 95% 4.9 88% 22.6 94%

Multi-core Efficiency Study 

New 2.2 GHz Quad Cores 

Cray XT3/4 (09/29/08) 

Total of 4096 cores 

12800x1280 mesh: ~65M 

unknowns; Agg = 33; 

Coarse Operator: ~60K  

unknowns 

ML: V(1,1) with ILU(1,2)/

ILU(1,2)/KLU and Petrov-

Galerkin Projection 

Our Largest Steady-state Simulation to Date: 

1+ Billion unknowns 
250 Million Quad elements 

24,000 cores Cray XT3/4 
Newton-GMRES / ML: PG-AMG 4 level 

18 Newton steps 

86 Avg. No. Linear Its. / Newton step 
33 min. for solution 



Nonlinear System Solves 
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NOX and LOCA are a combined package for solving and 
analyzing sets of nonlinear equations. 

  NOX: Globalized Newton-based solvers. 

  LOCA: Continuation, Stability, and Bifurcation Analysis. 

We define the nonlinear problem: 

is the residual or function evaluation 

is the solution vector 

is the Jacobian Matrix defined by:  

NOX/LOCA: Nonlinear Solver  

and Analysis Algorithms 
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Broyden s Method

Newton s Method

     Tensor Method    

Iterative Linear Solvers: Adaptive Forcing Terms
Jacobian-Free Newton-Krylov

Jacobian Estimation: Colored Finite Difference

Line Search
Interval Halving

Quadratic
Cubic

More -Thuente
Curvilinear (Tensor)

Homotopy
Artificial Parameter Continuation
Natural Parameter Continuation

Trust Region
Dogleg

Inexact Dogleg

Globalizations

Nonlinear Solver Algorithms 



Stopping Criteria 

(Status Test) 

Example: Newton’s Method for F  (x) = 0 

Choose an initial guess x0 

For k = 0,1,2,... 

Compute Fk = F  (xk) 

Compute Jk where  

(Jk )ij = F  i(xk)/ x  j 

Let dk = -Jk
-1 Fk 

(Optional) Let k be a calculated 

step length 

Set xk+1 = xk + kdk 

Test for Convergence or 

Failure 

Calculating 

the Direction 

Damping or 

Line Search 

Iterate Control 

(Solver) 

Building Blocks of NOX 



Stopping Criteria  
(StatusTests) 



Building a Status Test 

• Fail if value of          becomes Nan or Inf  

NOX::StatusTest::FiniteValue finiteValueTest; 

FiniteValue: finiteValueTest 

• Fail if we reach maximum iterations 

• Converge if both: 

MaxIters: maxItersTest 

NOX::StatusTest::MaxIters maxItersTest(200); 

normFTest 

NOX::StatusTest::NormF normFTest(); 

normWRMSTest 

NOX::StatusTest::NormWRMS normWRMSTest(); 

Combo(AND): convergedTest 

NOX::StatusTest::Combo convergedTest(NOX::StatusTest::Combo::AND); 

Combo(OR) 

allTests 

NOX::StatusTest::Combo allTests(NOX::StatusTest::Combo::OR); 

allTests.addStatusTest(finiteValueTest); 

allTests.addStatusTest(maxItersTest); 

allTests.addStatusTest(convergedTest); 

convergedTest.addStatusTest(normFTest); 

convergedTest.addStatusTest(normWRMSTest); 



Status Tests Continued 

User Defined are Derived from NOX::StatusTest::Generic 

NOX::StatusTest::StatusType checkStatus(const NOX::Solver::Generic &problem) 

NOX::StatusTest::StatusType  
checkStatusEfficiently(const NOX::Solver::Generic &problem,  
                                     NOX::StatusTest::CheckType checkType) 

NOX::StatusTest::StatusType getStatus() const 

ostream& print(ostream &stream, int indent=0) const 

-- Status Test Results -- 

**...........OR Combination ->  

  **...........AND Combination ->  

    **...........F-Norm = 5.907e-01 < 1.000e-08 

                 (Length-Scaled Two-Norm, Absolute Tolerance) 

    **...........WRMS-Norm = 4.794e+01 < 1 

                 (Min Step Size:  1.000e+00 >= 1) 

                 (Max Lin Solv Tol:  1.314e-15 < 0.5) 

  **...........Finite Number Check (Two-Norm F) = Finite 

  **...........Number of Iterations = 2 < 200 

-- Final Status Test Results -- 

Converged....OR Combination ->  

  Converged....AND Combination ->  

    Converged....F-Norm = 3.567e-13 < 1.000e-08 

                 (Length-Scaled Two-Norm, Absolute Tolerance) 

    Converged....WRMS-Norm = 1.724e-03 < 1 

                 (Min Step Size:  1.000e+00 >= 1) 

                 (Max Lin Solv Tol:  4.951e-14 < 0.5) 

  ??...........Finite Number Check (Two-Norm F) = Unknown 

  ??...........Number of Iterations = -1 < 200 
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NOX Interface 

Group Vector 

computeF() innerProduct() 

computeJacobian() scale() 

applyJacobianInverse() norm() 

update() 

NOX solver methods are ANAs, and are implemented in terms 
of group/vector abstract interfaces: 

NOX solvers will work with any group/vector that implements 
these interfaces. 

Four concrete implementations are supported: 
1. LAPACK 

2. EPETRA 
3. PETSc 

4. Thyra (Release 8.0) 



NOX Interface 

Solver 

Layer 

Abstract Vector & Abstract Group 
Abstract 

Layer 

Solvers 

- Line Search  
- Trust Region Directions 

- e.g., Newton 

Line Searches 

- e.g., Polynomial 

Status Tests 

- e.g., Norm F 

• Don’t need to directly access the vector or matrix entries, only 

manipulate the objects. 

• NOX uses an abstract interface to manipulate linear algebra objects. 

• Isolate the Solver layer from the linear algebra implementations used by 

the application. 

• This approach means that NOX does NOT rely on any specific linear 

algebra format. 

• Allows the apps to tailor the linear algebra to their own needs! 

– Serial or Parallel 

– Any Storage format: User Defined, LAPACK, PETSc, Epetra  



NOX Framework 

Solver 

Layer 

Abstract Vector & Abstract Group 
Abstract 

Layer 

Linear  

Algebra 

Interface 

Implementations 

- EPetra 
- PETSc 

- LAPACK 
- USER DEFINED 

EPetra Dependent Features 

- Jacobian-Free Newton-Krylov 
- Preconditioning 

- Graph Coloring / Finite Diff. 

Solvers 

- Line Search  
- Trust Region Directions 

- e.g., Newton 

Line Searches 

- e.g., Polynomial 

Status Tests 

- e.g., Norm F 

Application 

Interface 

Layer 

User Interface 

- Compute F 
- Compute Jacobian 

- Compute Preconditioner 



The Epetra “Goodies” 

• Matrix-Free Newton-Krylov Operator 

• Derived from Epetra_Operator 
• Can be used to estimate Jacobian action on a 

vector  
• NOX::Epetra::MatrixFree  

• Finite Difference Jacobian 
• Derived from an Epetra_RowMatrix  

• Can be used as a preconditioner matrix 
• NOX::Epetra::FiniteDifference 

• Graph Colored Finite Difference Jacobian 
• Derived from NOX::Epetra::FiniteDifference 

• Fast Jacobian fills – need connectivity/coloring 
graph 

•  (NOX::Epetra::FiniteDifferenceColoring) 

• Full interface to AztecOO using NOX parameter list 

• Preconditioners: internal AztecOO, Ifpack, User defined  
• Scaling object 


